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Despite decades of development of unstructured mesh methods, direct numerical simulations (DNS) 
of turbulent flows are still predominantly performed on structured or unstructured hexahedral 
meshes with high-order finite-difference methods, weighted essentially nonoscillatory (WENO) 
schemes, or hybrid schemes formed by their combinations.  Tetrahedral meshes offer easy mesh 
generation and adaptation around complex geometries and the potential of an orientation-free grid 
that would benefit the isotropic nature of small-scale dissipation, as well as the solution accuracy of 
intermediate scales. To advance the state of the art of unstructured-mesh simulation capabilities for 
shock/turbulence interaction, DNS using pure tetrahedral meshes are carried out with the space-time 
conservation element, solution element (CESE) method in this research. By its design, the CESE 
method is constructed based on a non-dissipative scheme and is a genuinely multidimensional 
numerical framework that is free from the use of an approximate Riemann-solver. The numerical 
framework also provides the ability to add numerical dissipation (the nondissipative scheme acts as 
the reference state like that of the reversible state in thermodynamics) when needed (with 
justification from mathematics/physics). The above-mentioned features along with the CESE 
method’s consistent shock-capturing approach and strong enforcement of flux conservation in space-
time offers a novel method to accurately simulate turbulent flows and their interaction with shocks 
using tetrahedral meshes. Two canonical problems, namely, isotropic turbulence interaction with a 
normal shock and a Mach 2.9 turbulent boundary layer flow over a 24° compression corner are 
investigated in this study. Computational results show reasonably good agreement with experimental 
data and results from structured-mesh, high-order simulations available in the literature.  Successful 
validation of these canonical problems demonstrated here paves the way for future high-fidelity 
supersonic flow simulations involving complex-geometries.  
 

Nomenclature 
 
A = area of the space-time element interface 
E = total energy, defined in the second section  

€ 

ex ,  ey ,  ez ,  and et   = unit vectors along the x-, y-, z-, and t- directions 
Fx, Fy, Fz = flux vectors for general conservation laws in the three spatial directions 
G = source vector for general conservation laws 

€ 

h  = flux density vector in the joint space-time domain  
k0 =  the most energetic turbulent wave number 
M = freestream Mach number 
M1,, M2 = Mach numbers before and after the normal shocks 

€ 

n  = unit surface normal 
p =  pressure 
Re = Reynolds number based on length 
Reunit = unit Reynolds number (1/m) 
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€ 

Reθ  = Reynolds number based on θ 
R                = gas constant 

€ 

s  = surface normal vector in the joint space-time domain 
t = time 
T = temperature 
u =  streamwise velocity 
U = dependent solution vector 
v = wall-normal velocity 
V        =  integration space-time volume 
w =  spanwise velocity  
x = streamwise coordinate  
y = wall-normal coordinate 
z = spanwise coordinate in direction parallel to leading edge 
x0, ,y0, z0 =  coordinates of solution point within the solution element 
γ =  ratio of the specific heats 
δ = 99% thickness of the boundary-layer 
θ = momentum thickness  
ρ =  density 
ω  =  vorticity 
 
Subscripts 
x, y, z, t =  derivatives in spatial and temporal directions 
∞ =  freestream conditions 
i, k = indices 
0  = conditions at inflow of domain 
 
Superscripts 
+ = viscous wall units 
 

I. Introduction 
 

Numerical simulations of turbulent flows have been actively pursued for several decades.  Parallel 
to the advancement of CPU speed and large-scale parallel clusters, mesh size for turbulent flow simulations 
is approaching trillions of grid points.1 The state-of-the-art large-scale direct numerical simulation (DNS) 
done in Ref. 1 simulated isotropic turbulence interacting with shocks using about 2 million CPU cores. 
Three main ingredients went into the one of a kind simulation in Ref. 1: (i) structured meshes; (ii) a hybrid 
numerical scheme that uses 6th-order central-difference scheme in smooth regions of the flow and a 5th-
order weighted essentially nonoscillatory (WENO) scheme for shock-capturing; and (iii) an explicit time-
marching scheme. Many other similar investigations also share these common characteristics.  

Despite decades of development in methods for generating unstructured meshes, as well as 
numerical methods that use them, DNS or large eddy simulations (LES) of turbulent flows have 
consistently relied upon the use of structured meshes. The primary reason is that the higher-order numerical 
methods employed in these simulations are based on finite-difference methods.  Even when unstructured-
mesh-based higher-order schemes are employed for DNS/LES, there is a preference toward using 
hexahedral elements because of the difficulties the numerical methods have in handling tetrahedral 
elements especially in regions of shocks or sharp gradients.2,3 From the standpoint of turbulent flow 
physics, unstructured meshes with isotropic tetrahedral meshes are in general free of any artificial grid 
orientation and therefore, are closer to the isotropic nature of the smaller dissipative scales in those flows.  
Hence, one could argue that such isotropic meshes in conjunction with proper (nonexcessive) numerical 
dissipation could improve the solution accuracy of medium-to-small scales in DNS or LES. However, the 
above-mentioned reasoning remains to be proven. For turbulent boundary-layer simulations, the use of pure 
isotropic tetrahedral meshes near the wall would also significantly increase the grid count by orders of 
magnitude, making it intangible for most of the high-performance computing facilities.      
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 Implicit schemes have been preferred for many CFD computations due to their robustness to deal 
with stiffness (either from embedded poor-quality mesh elements or stiff source terms) and rapid 
convergence to steady state solutions. However, when applied to large-scale DNS/LES of turbulent flow 
simulations (and transitional flow or acoustic-wave computations), the ability to march with a larger time 
step is lost as the solution accuracy dictates the time step instead of the convergence rate to steady state. 
From a flow physics standpoint, the physical time scale in most unsteady, transitional, or turbulent flows is 
quite close to that of the acoustic wave.  This implies that the time step determined from the CFL number 
of about 1 is very close to the physical time scale. Furthermore, as the mesh size increases to the order of 
billions or trillions, the accompanying matrices in implicit schemes brings in additional complexities: (i) 
the increased matrix size makes the memory usage suboptimal under the large-scale cluster environment; 
and (ii) parallel scaling for banded matrices have also been poor for the current computer architecture. 
Thereby, explicit schemes free of matrix solvers with high-order time accuracy become more efficient than 
implicit schemes for such flow simulations.   

Shock/turbulence interaction is fundamental to many fluid mechanics applications, especially in 
the area of high-speed flights where shock wave - turbulent boundary layer interaction (SWBLI) is a 
dominant feature. As a result, various aspects of this problem have been the subject of many DNS/LES 
studies (e.g., see Refs. 4–7). All of these studies employ either compact-differencing schemes with high-
order filters,8 WENO methods,9 or a hybrid treatment1 that uses the upwind-based WENO operator to 
stabilize flow discontinuities and switches to low-dissipation schemes away from the shock to resolve the 
unsteady waves. However, a previous study10 has shown that any use of an upwind-based approach to 
capture shock effects, when not kept to a minimum, can significantly affect the post-shock turbulence. 
Furthermore, all of the above-mentioned numerical schemes can only be implemented on structured 
meshes.  

In light of the discussion above, this paper investigates numerical simulations of turbulent flows 
and their interaction with shocks by using tetrahedral meshes along with a unified numerical framework 
that is time-explicit and has a strong conservation preserving property.  Others are pursuing similar 
research in the CFD community. For example, Khalighi et al.11 investigated explicit, hybrid algorithms for 
unstructured meshes and validated their algorithms and codes for turbulent jets and the accompanying 
acoustic wave propagation. In the present research, the space-time conservation element, solution element 
(CESE) method12–17 is used for turbulent flow simulations with tetrahedral meshes. The CESE method is 
formulated with the strong space-time unity integral form of conservation laws making it suitable for 
handling waves and flow discontinuities with high accuracy.17–19 The concept of flux conservation in time 
that is introduced in the CESE method removes any distinction between space and time, thereby providing 
uniform accuracy in space and time and that feature has appreciable advantages for eddy-resolving 
turbulent flow computations. Accuracy of a temporal scheme is critical for the simulation of turbulent 
flows and inadequate temporal discretization can significantly lower the accuracy of spatial schemes.20 
Additionally, the time-accurate local time-stepping (TALTS) scheme15–17 formulated in the CESE method 
is appealing for eddy-resolving turbulent simulations due to a wide spectrum of length and time scales 
involved in such flows. The TALTS algorithm allows for larger time steps to be used for large flow 
structures away from the wall and in the quiet freestream regions, but at the same time guaranteeing 
conservation of fluxes in space and time. The genuinely multidimensional formulation, free of approximate 
Riemann solvers and dimensional splitting, of the CESE method offers a distinctly different way to 
simulate turbulent flows interacting with shocks.  Whether or not this distinctness translates into significant 
advantages is also explored through this work.  

The main objective of this paper is to advance the state-of-the-art direct numerical simulations for 
turbulent flows with pure tetrahedral meshes.  Successful demonstration of such simulations will constitute 
the building blocks for future high-fidelity computations involving complex geometries.  Towards this end, 
two canonical problems are investigated as part of the study: (i) isotropic turbulence/normal shock 
interaction; and (ii) interaction of a supersonic turbulent boundary layer with an oblique shock.   

The first problem studied in this work is a simplistic representation of the problem of shock-
turbulence interaction and is a continuation of the authors’ previous work.21 The problem also serves as a 
stringent test for assessing the capability of a numerical method to handle the passing of smaller flow 
structures through a strong shock.  The second problem investigated here is the interaction of a Mach 2.9 
turbulent boundary layer with an oblique shock originating from a 24° compression corner. The topic of 
SWBLI has been an active research area both computationally and experimentally for many decades. The 
flow physics, numerical issues and the state of the art for its prediction have been summarized in several 
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reviews.22-25 Despite so many studies, some aspects of the flow physics are still not well understood. 
Moreover, almost all of the experimental studies have been performed at relatively high Reynolds numbers 
that are beyond current DNS/LES capabilities. To rectify that aspect, Bookey et al.,26 and Ringuette et al.27 
performed experiments of a Mach 2.9 supersonic turbulent boundary layer flow past a 24° compression 
corner under flow conditions that were within DNS accessible range (Reynolds number,

€ 

Reθ ≈ 2400 ). The 
same configuration is investigated here using the CESE method and tetrahedral meshes. This canonical 
case has also been studied in other DNS investigations7, 28 using hexahedral meshes.  The results from 
CESE are compared in detail with experimental measurements27 as well as data from the DNS studies.7, 28  

A brief description of the numerical method and the code used is given in the next two sections, 
followed by the results section in which computational results of the above-mentioned cases are given in 
sequence.  Flow physics due to the interaction with shocks is discussed in detail to demonstrate that the 
current unstructured mesh DNS is a viable alternative to more conventional structured mesh based methods 
in high-fidelity simulations of supersonic turbulent flows and their interaction with shocks.  

II.  The CESE Method 
 

  Consider any 3D conservation law (Navier-Stokes, Maxwell’s equations etc.). Let: (a) x, y, and z 

be the spatial coordinates, and t be the time coordinate; (b) 

€ 

x1 =
def
x , 

€ 

x2 =
def
y , 

€ 

x3 =
def
z , and 

€ 

x4 =
def
t  be the 

coordinates of a four-dimensional Euclidean space E4 ; (c) 

€ 

ex ,  ey ,  ez ,  and et  be the unit vectors along the 
x-, y-, z-, and t-directions, respectively; and (d)   

€ 

r 
h , be the space-time flux density vector, respectively. Then 

  

€ 

r 
h  can be expressed as   

   

€ 

r 
h = Uet + Fx ex + Fy ey + Fzez  (1) 

where (a) U represents the dependent conservative variables per unit spatial fluid volume; and (b) each of  
Fx ,  Fy , and Fz represents the flux functions in the three spatial directions that are differentiable functions 
of U and its spatial derivatives in some cases. Then, the most fundamental and general form of the unsteady 
conservations laws applied over a space-time flow domain D in E4 can be cast into the following space-
time unity integral form:  

   

€ 

r 
h Ω∫ ⋅d r s = GdVV∫   (2) 

where the space-time flux vector is integrated over the surface 

€ 

Ω of an arbitrary space-time domain V in D.  
The space-time surface area vector is defined as   

€ 

d r s = r n dA  where  

€ 

r n  is the outward surface unit normal and 
dA is the space-time surface area increment in 

€ 

Ω.   The vector G is associated with possible source terms 
such as body force, chemical reaction, or other external forcing.  For three-dimensional compressible 
Navier-Stokes equations, the dependent variables are defined by 

€ 

U = ρ , ρu , ρv , ρw, e( )  where 

€ 

ρ , u, v, w, 
and e represent density, the three velocity components, and total energy per unit volume 

(

€ 

e = p
γ -1

+
ρ
2
u2 + v 2 + w2( )), respectively.  Flux vectors Fx , Fy , and Fz, contain five elements to 

incorporate mass, three momentums, and energy conservation in the spatial coordinates x, y, and z, 
respectively. The source vector G is zero and the governing equations reduce to 

    

€ 

r 
h Ω∫ ⋅d r s = 0. 	(3) 

This form of the conservation law is valid for all 3D unsteady flows, including those with solution 
discontinuities (in space and time), such as shocks and contact discontinuities and is the form employed by 
the space-time CESE schemes.  
 

Discretized equations of Eq. (3) for a tetrahedral element take the following form 

   

€ 

r 
h ikk =1

4∑i=1
N∑ ⋅Δ

r s ik = 0. (4) 

In the CESE method, the individual space-time volume elements over which the space-time flux 
conservation is enforced is known as the conservation element (CE) and its boundaries are part of what is 
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denoted as a solution element (SE). Thereby, in Eq. (4), the index i corresponds to one of N CEs that make 
up the computational domain.  For a tetrahedral element, there are: (i) a total of four neighboring CEs; and 
(ii) each CE is bound by five SEs (one corresponding to each of the element and its four neighbors). Within 
the SEs, the dependent variables Ui are assumed to be smooth and vary according to the Taylor series 
expansion, 

€ 

Ui x, y,z, t( ) =U0i +Uti t − t0( ) +Uxi x − x0( ) +Uyi y − y0( ) +Uzi z − z0( )  (5) 

where (x0, y0, z0, t0) is the solution point within the SE. The solution point is defined as the the centroid of 
all surrounding CEs.  For high-order CESE schemes, Eq. (5) would contain higher derivatives(second and 
third for fourth-order schemes) in the Taylor series expansion.  

In traditional finite-volume methods, the smoothness assumption is enforced within the control 
volume and the flow variable itself is assumed to be discontinuous across the boundaries of the control 
volume.  In the CESE method by contrast, the smoothness assumption is only enforced at the boundaries of 
the CE and discontinuities are allowed to exist in the bulk of the space-time volume within the CE. With 
the boundaries of a CE being part of distinct solution elements, this approach allows for a unique definition 
of the flux leaving or entering each of the interfaces (using Eq. (5) without any reconstruction or Riemann 
approximation), thereby resulting in a genuinely multidimensional scheme. Additionally, in many of the 
common CFD algorithms, the temporal derivative is treated separately by using finite differences and 
spatial derivatives alone are integrated via either finite-volume or Galerkin methods. The CESE method, 
however, integrates the conservation laws over the entire discretized space-time domain in a unified 
manner.  Such consistent formulation offers uniform temporal and spatial solution accuracy up to the 
designed order.  For flow simulations, the conservation in both space and time has the potential to improve 
the temporal accuracy.  More details of the numerical formulation used here can be found in Refs. 12 and 
13.   

III. Code 
 

As mentioned in the previous section, the space-time CESE method is substantially different from 
conventional CFD software in many regards.  The distinction between integration volume (CE) and 
solution volume (regions where the approximated polynomials are valid or SE) implies that the data 
structure has to allow divisions of mesh elements in two different ways.  The space-time integration further 
requires constructions of general surfaces that extend over spatial and temporal coordinates simultaneously.  
The time-accurate local time-stepping scheme demands data structures to track partitions of each solution 
element and its proper communication with the neighbors that have a different number of partitions.   

The NASA in-house CESE Navier-Stokes Solver, ez4d, has been designed and implemented from 
scratch to cope with these very different requirements that do not exist in existing CFD codes.  For 
computational efficiency and ease of continual development, the ez4d software framework has been 
developed using a combination of object-oriented and generic programming paradigm in the C++ 
programming language. Lightweight object-oriented hierarchy is used in conjunction with heavy use of 
template classes and functions to allow compile time polymorphism. Different conservation laws can be 
plugged in with templates that represent physics. Currently, the software supports either 
triangular/tetrahedral or quadrilateral/hexahedral unstructured meshes. Both multithread (based on low-
level POSIX thread) and message passing interface (MPI) paradigms are used to facilitate large-scale 
parallel computations. Each MPI process within a computational node can be executed in multithread mode 
to further enhance parallel performance, especially for a memory bound multidomain layout.  

Both second- and fourth-order CESE numerical schemes are implemented for general 
conservation laws including Euler and Navier-Stokes equations in the software framework. The TALTS 
scheme is used to enhance parallel performance for elements running at CFL numbers much smaller than 
one while maintaining a uniform temporal accuracy. Load balance for such runs can be improved via 
volume-weighted domain decomposition offered in the METIS29 utility. For RANS simulations, 
implementations of the Sparlart-Allmaras and Mentor’s SST-V models30 exist within the ez4d framework.  
Large eddy simulations with subgrid scale dynamic-models capabilities have been recently added to the 
software for turbulent shear or boundary layer simulations. 
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IV. Results and Discussion 
Results for the chosen test problems obtained using the 2nd-order accurate (time and space) CESE 

schemes and tetrahedral meshes are discussed in this section.  The use of only 2nd-order accurate schemes 
in this paper is to assess feasibility of such methods in high-fidelity turbulent flow simulations.   

A. Canonical Isotropic Turbulence - Normal Shock Interaction  

The first problem under consideration concerns the most fundamental problem in shock/turbulence 
interaction, where complexities such as real-gas effects, nonuniform mean flow, etc., are ignored. Here, 
isotropic turbulence passes through a nominally normal shock in a perfect gas. A cubic domain of length 3π 
in the streamwise direction and 2π in the transverse directions was used in the computations.  The normal 
shock was located at x = π. Unstructured meshes containing isotropic tetrahedrons generated with 
Pointwise® are used for the solutions presented in this section.  Depending on the strength of the shock and 
the intensity of the turbulence, two different regimes of interaction are possible, namely: (i) the wrinkled 
shock regime and (ii) the broken shock regime (Ref. 4). In the wrinkled shock regime, the shock retains its 
structure at all times, while it does not in the broken shock regime. Both regimes were examined as part of 
this work, by fixing the inflow turbulence intensity and varying the flow Mach number (shock strength). 
The M1 = 1.5 and 1.87 conditions will correspond to the wrinkled shock regime, with M1 being the Mach 
number upstream of the normal shock; and the M1 = 1.28 condition corresponds to the broken shock 
regime. 

The approach of imposing inflow conditions is adopted from earlier studies32–34 that specify the 
method for generating inflow turbulence tailored toward studying spatially-evolving turbulence and its 
interaction with a shock wave. Two important nondimensional parameters that characterize the state of the 
inflow are  (i) turbulent Mach number,

€ 

Mt , and (ii) Reynolds number based on the Taylor microscale, 

€ 

Reλ . 
They are defined as follows: 

 

 

€ 

Mt =
uiui
c

;   Reλ =
ρ urmsλ

µ
 . (6) 

where, 

 

€ 

urms =
uiui

3
;   λ2 =

u1
2

∂u1 /∂x( )2
 . (7) 

In the above equations, the symbol 

€ 

 stands for ensemble average and 

€ 

λ  represents the Taylor 
microscale. The flow field is initialized by setting up a random velocity field, 

€ 

ui,0  that is solenoidal and has 
an exponentially decaying velocity spectrum Ek , defined below, that corresponds to a specific initial 

€ 

Mt  
and  

€ 

Reλ . 

 

€ 

E(k) ~ k 4 exp −2 k /k0( )2( ) ;  3urms,0
2

2
=

ui,0ui,0
2

= E(k)dk 0
∞∫ .  (8) 

where, k stands for the wavenumber magnitude. k0, the most energetic wavenumber, is taken as 4. For the 
chosen spectrum, the initial Taylor length scale 

€ 

λ  is 2/k0. The initial density and pressure fields are 
assumed to be constant, and the remaining parameters are set based on 

€ 

Mt,0 = 0.22  and	

€ 

Reλ,0 = 19.9 . 
Periodic boundary conditions are used at the boundaries on the y- and z-planes. At the outflow boundary, 
subsonic conditions corresponding to Rankine-Hugoniot jump conditions of the corresponding shock 
strength are used without a buffer domain. Previous studies4, 32, 33 of this problem needed special treatment 
of the outflow boundary condition via a buffer domain or sponge layer to damp any wave reflections and to 
further ensure that the shock remained stationary. No such special treatment of the outflow boundary 
condition was needed here. The simplicity and effectiveness of the outflow boundary conditions in the 
CESE method is an outcome of its foundational aspects. More details about it can found in Refs. 21, 34, 
and 35. 
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As part of the grid-sensitivity study, to assess the actual grid resolution required by the 2nd-order 
accurate CESE scheme for capturing the essential features of the flow, several isotropic meshes were 
tested. All of the meshes, with the exception of the finest mesh, did not have any clustering of mesh points 
around the shock region. The meshes without any packing of grids around the shock contained isotropic 
tetrahedrons throughout the domain with an edge length of approximately, 2π/64, 2π/75, 2π/96, 2π/128, and 
2π/161 resulting in a total element of approximately, 6, 9, 18, 33, and 52 Million tetrahedral cells, 
respectively. The finest mesh (~66 Million cells), see Fig. 1, contained cells with an approximate edge 
length of 2π/161 in the coarse region and had cells packed in all three directions in a small region 
immediately behind the shock (with an approximate spacing of 2π/256, that corresponds to approximately 
twice the shock thickness) to capture the rapid changes that occur due to the shock-turbulence interaction. 
The ability to pack grids only in a critical region without the grid distribution propagating to regions of 
lesser importance (as seen in simulations involving structured grids) is a primary advantage of using 
unstructured grids.  
 

 
Figure 1. A slice of the mesh (one that includes packing of grids in the post-shock region) shaded with 
the local Mach number. 

 
The instantaneous solution for the flow conditions of (Mt = 0.22, M1=1.5) after approximately four 

flow-through times is shown in Fig. 2.  The Q-criterion isosurfaces have been color shaded by the local 
Mach numbers to help distinguish the pre- and post-shock regions. Additionally, isosurfaces of dilatation 
contour are used in these plots to help visualize the instantaneous shock surface. The isotropic nature of the 
incoming turbulence is indicated by the random orientation of the vortex cores upstream of the shock 
surface. The shock compresses the turbulence in the streamwise direction, distorts the vortices, and in the 
meantime, makes them predominantly align in the y-z plane (see the top view, Fig. 2). The weak distortion 
of shock surface seen here is representative of the wrinkled shock regime. 

In all of the plots to be shown here onward, the streamwise coordinate has been 
nondimensionalized using the wavenumber of peak energy k0, for facilitating comparison with linear 
theory.36 Furthermore, the nondimensionalized streamwise coordinates have been translated such that the 
shock is located at x = 0. Averaging was performed over the transverse direction and in time by using the 
solution data collected over four flow-through times.  For most of the conditions shown here, linear 
interaction analysis (LIA) is valid and the peak amplitudes predicted by it are provided for reference, 
wherever possible, along with additional computational results from Larsson and Lele.4 
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(a) Perspective View (b) Top View 

Figure 2. Solutions for interaction of isotropic turbulence (Mt = 0.22) with a normal shock (M1=1.5), 
showing isosurface of Q-criterion (0.2) shaded with the local Mach number.  Shock surface is 
represented by isosurface of dilatation (-1.0).	
   

The flow condition corresponding to M1 = 1.5 and 

€ 

Mt = 0.22  was used for the grid convergence 
study. Vorticity, with its dependence on sensitive small-scale flow features, serves as a good indicator for 
analyzing grid convergence for this problem. Furthermore, it also brings out the underlying aspect that in 
the post-interaction region the initially isotropic turbulence becomes more anisotropic, due to the 
amplification of the transverse component of the vorticity.  However, as can be seen from Fig. 3(a), 
anisotropy of the vorticity variance seems to indicate a rapid grid convergence. For this particular problem, 
the transverse component of the vorticity (normalized by the corresponding value upstream of the shock) 
undergoes a larger amplification than the streamwise vorticity. Therefore, looking into the amplification of 
the transverse component of the vorticity variance, Fig. 3(b), gives a better indication of how grid-
converged the results are. With the two finest meshes used in the study, the amplification factor of the 
transverse vorticity obtained from the computations are close to that predicted by LIA (~3.1, see Fig. 5(b) 
of Ref. 33) as well as computations of Larsson and Lele,4 indicative of nearing a grid converged solution. 
Although not shown here, evolution of the Reynolds stresses also indicates a rapid grid convergence, 
similar to the plot of vorticity anisotropy. 

 

  

(a) Anisotropy of vorticity variance (b) Transverse vorticity variance 
Figure 3. Evolution of vorticity variances obtained from the computations of normal shock-
turbulence interaction, using meshes with different resolutions. 
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Given that the finest mesh captures the rapid amplification of vorticity in the vicinity of the post-
shock region correctly to the level predicted by LIA and other computations, it is indicative of the 
requirement of a finer grid resolution in the vicinity of the post-shock region. However, a closer look at the 
vorticity anisotropy plot (Fig. 3(a)) reveals that the vorticity is on its way to recovering its isotropy in 
regions beyond k0x~15, but the value is still above 1. The failure to completely recover isotropy is 
indicative of a lack of adequate resolution in the regions closer to the outflow boundary, as suggested by 
Larsson and Lele,4 and needs to be investigated upon in the future with finer grid resolution in those 
regions.  

All of the subsequent studies, focusing on the various shock turbulence interaction regimes, were 
carried out on the grid with 66 million cells that had packing of the grids in the vicinity of the post-shock 
region. The evolution of the streamwise and transverse components of the Reynolds stresses, along with the 
vorticity variances (normalized with their values just upstream of the shock), for various shock strengths 
are shown in Figs. 4(a)–(d). In general, for these flows at a given turbulent Mach number, the amplification 
of the Reynolds stresses and vorticity increases with an increase in shock strength at the region of 
interaction with the shock. The streamwise component of the Reynolds stress undergoes a rapid increase 
behind the shock before continuing to evolve nonmonotonically. The transverse stress component also 
increases at the shock, but then decays almost monotonically behind the shock. However, the level of 
fluctuation in the streamwise component just behind the shock is in general larger than the transverse 
component because of the contribution from the acoustic waves that are generated when the vortical waves 
interact with the shock. The post-shock increase of the streamwise component of the Reynolds stress is not 
predicted by the linear theory and can only be explained by nonlinear effects.4, 32–33 A closer observation of 
Fig. 4(a) reveals that for the case of M1 = 1.28 (red dashed-line curve) alone, the streamline component of 
the Reynolds stress does not see a secondary peak in the post-shock region and instead has a more 
monotonic decay. This is indicative of the broken shock regime of the interaction. Given the weak shock, 
the incoming turbulence level is significantly higher in this scenario compared to other conditions studied. 
The result is a stronger interaction where the shock gets broken creating many holes in the shock surface. 
Through these holes, the flow can pass through smoothly without experiencing any distortion. As a 
consequence, one does not see the nonlinear evolution of the transverse component of the stress in the post-
shock region and the general amplification of the transverse vorticity and Reynolds stresses are also 
comparatively small. The behavior of the Reynolds stresses observed in this study is consistent with what 
has been observed in the literature.4, 32–33 As can be seen from Fig. 4(d), the predicted amplification rates of 
the transverse component of the vorticity for different Mach numbers from our computations compare well 
with that of LIA and computations of Larsson and Lele.4 Overall, the results indicate that the CESE method 
is able to capture the physics of the normal shock - turbulence interaction accurately on grids containing 
isotropic tetrahedral mesh elements. 
 

B. Oblique Shock - Turbulent Boundary Layer Interaction 

Flow of a Mach 2.9 supersonic turbulent boundary layer past a 24° compression corner, the focus of 
experiments by Bookey et al.26 and Ringuette et al.,27 is studied here using the CESE method and 
tetrahedral meshes. The same configuration has also been investigated using hexahedral meshes in other 
DNS studies.7, 28 The DNS study by Wu and Martin,7 was conducted concurrently along with the 
experiments and hence is also closer in conditions to the experiments. The goal here, in addition to 
validation of the computational tool, is to explore the flow physics from a different numerical perspective. 
The state of the incoming boundary layer in the experiment was 

€ 

θ = 0.43 mm; 

€ 

δ = 6.7 mm;  and Cf = 0.00225 . The reference flow conditions corresponding to the experimental study are 
given in Table 1. For all of the inflow computations performed in this section, periodic boundary conditions 
were enforced in the spanwise direction; solid walls were treated as being isothermal; and general non-
reflecting boundary conditions were enforced at the outflow boundary. 
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(a) Streamwise Reynolds stress component (b) Transverse Reynolds stress component 

  
(c) Anisotropy of vorticity variance (d) Peak amplification of transverse vorticity 

variance 
Figure 4. Evolution of vorticity variances and Reynolds stresses for different shock strengths. 

 
 

Table 1. Reference flow conditions. 
M 

€ 

ρ∞ , kg/m3 

€ 

u∞ , m/s 

€ 

T∞ , K Reunit 

€ 

Twall /Tadiabatic  

2.9 0.0736 607.58 109.25 5.907 × 106 0.95 

 

1. Inflow Turbulence Generation and its Assessment 
 
The ability to prescribe three-dimensional, time-dependent inflow boundary conditions is one of the 

most challenging and important aspects of performing DNS/LES of turbulent boundary layers. An effective 
approach can help substantially reduce the computational cost (smaller domain size) and also provide the 
correct physics without adding any artificial effects to the flow. A comprehensive survey of the various 
approaches is listed in Refs. 37 and 38. In this study, a variation of the rescaling-recycling method 
developed by Lund et al.39 is used to generate the incoming turbulent boundary layer. This approach 
requires an auxiliary computation wherein the desired inflow plane is located inside another computational 
box. This variation is similar to the method originally proposed by Spalart.40 The general procedure 
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consists of the following key steps: (i) a periodic boundary condition is enforced in the streamwise as well 
as spanwise directions; (ii) the mean flow (obtained from RANS computations that match the desired 
inflow boundary layer conditions of the experiment) is frozen by adding source terms to the discretized 
governing equations, and (iii) the perturbations alone are recycled through the imposition of periodicity in 
the streamwise direction and their spatial growth is simulated by the governing equation. An initial random 
velocity perturbation field is generated assuming an isotropic turbulence spectra; and this field is then 
multiplied with a prescribed Reynolds stress tensor (estimated from experimental data or a previous 
computation), as proposed by Lund et al.,39 to impose appropriate velocity RMS fluctuation distribution 
inside the boundary layer. Alternatively, a precomputed turbulent flow solution can also be used. The total 
initial field (mean plus perturbation) is evolved in time while the outflow perturbations are recycled into the 
inflow boundary. In general, the recycling simulation will settle down with a dynamic turbulent flowfield 
after about 2-3 flow through times, after the rather arbitrary initial fluctuation field has been “washed out” 
by the time-accurate Navier-Stokes solver. The prescribed Reynolds stress tensor used here was obtained 
from the supersonic turbulent boundary layer database* maintained by Prof. Sergio Pirozzoli’s research 
group. The strong Reynolds analogy (SRA) is used to prescribe the corresponding fluctuations in the 
thermodynamic variables. SRA relates fluctuations in thermodynamic variables to the previously 
determined velocity fluctuations. To prevent spanwise locking of large-scale structures, an outcome of the 
imposition of periodicity in streamwise directions, the spanwise shifting approach developed by Munters et 
al.41 is also used. 

For the above recycling computations (towards inflow generation), a smaller domain of size 

€ 

6δ0 in the 
streamwise direction, 

€ 

5δ0  in the wall-normal direction and 

€ 

3δ0 in the spanwise direction was used. The 
mesh used was obtained by slicing a hexahedral mesh into tetrahedrons. Isotropic tetrahedral elements were 
not used in this problem to avoid the large grid count that would result from trying to resolve the boundary 
layer down to the y+ = 1 range. The hexahedral mesh was uniformly spaced in streamwise and spanwise 
directions, with geometric stretching applied in the wall normal direction.  After 2-3 domain flow through 
times, when all transient effects have been washed out, the time-series is collected on points lying in a 
plane (representative of the inflow boundary of the main ramp computation) that is located midway in the 
streamwise direction. In other words, this unsteady data serves as the time-dependent boundary condition 
for the DNS computation.   

To assess the quality of the inflow generation approach, the data was fed into the flat plate section of 
the ramp configuration using the grid with the finest resolution (described in the following section) to 
simulate a spatially evolving Mach 2.9 zero-pressure gradient boundary layer. As shown by the Q-criteria 
plot in Fig. 5(a), the flow evolves in the streamwise direction revealing alternating hairpin vortex structures 
near the outer (free-stream side) part of the boundary layer.  Additional smaller structures closer to the wall 
are also evident.  The mean flow characteristics (not shown here) also appear to be correctly captured. Fig. 
5(b) shows the velocity fluctuation and temperature fluctuation profiles at three different streamwise 
locations. The near-wall peak of the streamwise velocity fluctuations appears to grow with distance from 
the inflow plane (increase in Reynolds number), while the wall-normal velocity fluctuations appear to take 
on a plateau like shape with intensity levels lower than that of the streamwise velocity. As for the 
temperature, a substantial level of fluctuations persists away from the wall. The overall level of the 
fluctuations and the location at which the intensities peak are in agreement with those reported in the 
literature.7, 42 As no scaling (van Driest) has been applied to the turbulence intensity data, the data appear to 
be scattered and do not collapse. These fluctuation profiles are similar in shape as the turbulent boundary 
layer evolves downstream of the plate without any observable transient effects from the inflow plane 
(where the solution from recycling simulation are fed in).  This observation provides good evidence that the 
recycling simulation solution represents the turbulent boundary layer properly at the prescribed Reynolds 
number 

 
 

                                                
* http://reynolds.dma.uniroma1.it/dnsm2/ 
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(a) Q-criterion shaded by Mach contour (b) Statistics of velocity and temperature fluctuations 
Figure 5. A spatially evolving Mach 2.9 turbulent boundary layer visualized through its Q-criterion 
and the statistics of its fluctuations.  

2. Grid Sensitivity 

 
In any DNS study mesh resolution is expected to be important; even more so here given the interplay 

between shocks and turbulent boundary layer present in the flow. Three different grids were generated to 
ascertain its sensitivity on the solution. The mesh was obtained by slicing a structured mesh (hexahedral 
elements). The hexahedral mesh was uniformly spaced in the streamwise and spanwise directions (without 
any packing toward the corner) and employed geometric stretching in the wall normal direction. Complete 
details about the domain size and mesh spacing are given in Table 2.  Given the simplicity of the geometry 
and the importance of the boundary layer region to the flow, the above-mentioned mesh generation 
approach (slicing a structured mesh) was the easiest to ensure that sufficient grid points (in the wall-normal 
direction) are within the boundary layer. Alternatively, one could ensure that the necessary wall-normal 
mesh spacing is met through the use of anisotropic grid generation features in commercial grid generation 
codes (e.g., the T-Rex feature of Pointwise®). Such an approach will be adopted in the future to benefit 
from the added ability that truly unstructured grids provide in terms of ability to pack or adapt grids in the 
relevant regions around the shock.  
 
Table 2. Details for the grid sensitivity study. The distance in the streamwise direction is broken into 
section lengths upstream and downstream of the corner. 

Mesh  

€ 

Lx × Ly × Lz (in δ0)  

€ 

Δy+  

€ 

Δx+  

€ 

Δz+  
No. Cells 

(tetrahedrons) 
Mesh 1 (8 + 6) × 5 × 3 0.4 12 8 ~15 Million 
Mesh 2 (8 + 6) × 5 × 3 0.4 8 4 ~25 Million 
Mesh 3 (8 + 5) × 5 × 3 0.2 6 3 ~45 Million 

 
As shown in Fig. 6(a), the spanwise-averaged mean (time-averaged) velocity profiles at the inflow 

plane appear to collapse on top of each other for the various mesh resolutions, but significant discrepancies 
are seen in the mean wall pressure distribution plot shown in Fig. 6(b). The coarser meshes (Mesh 1 and 
Mesh 2), predict much earlier separation as compared to that of experiment, while results from Mesh 3 
appears to come closest toward matching the experimental results (more details in a subsequent section). 
As indicated by Fig. 7, Mesh 2 is able to capture the general features of the flow, such as (i) the separation 
and reattachment shocks; (ii) the series of compression waves at the root of the shock, seen from the 
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numerical schlieren contour plot (exponential function of density gradient magnitude as proposed by Wu 
and Martin7); and (iii) the hairpin vortices changing from their long, and thin forms that are aligned in the 
streamwise directions into a more shorter post-shock structure that is inclined to the wall, in the ramp 
section. However, as indicated by the mean pressure plot, better agreement in mean wall pressure comes 
only with an increase in spanwise and wall-normal resolution.  A streamwise grid clustering near the corner 
of the ramp could potentially improve the resolution of the separation region length, a topic for future 
studies. Another possible reason for this discrepancy could be due to a mismatch in the boundary layer 
momentum thickness (discussed in the subsequent section) as compared to the experiments. 

 

  
(a) Velocity profile at inflow (b) Mean wall pressure distribution 

Figure 6. Influence of mesh resolution on the mean properties of the flow. 
 

 
Figure 7.  Isosurfaces of Q-criterion (1000) shaded by Mach number and a z-plane cut shaded by the 
numerical schlieren contours are shown for the computation performed using Mesh 2.  

3. Statistics and accuracy of the computation 

 
Results reported in this section were obtained using Mesh 3. Statistics were collected over 6 domain 

flow through times, i.e., the time for the free stream to travel about 70 times the inflow boundary layer 
thickness.  This time period may not be able to track the very low frequency mode that may exist, but it is 
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generally deemed to be enough for the quantities whose statistics are reported below (in Ref. [7], statistics 
were collected over a period equivalent to that needed by the freestream to travel 300 times the boundary 
layer thickness). An instantaneous plot of the shock surface and a numerical schlieren contour of a 
spanwise plane are shown in Figs. 8 (a) and (b) as a demonstration of CESE’s ability to accurately capture 
the flow details using tetrahedral elements (even within the boundary layer). Features such as the bending 
of the main shock as well as the weak shocklets that emerge from the edge of the boundary layer in the 
ramp section of the flow can be easily discerned from Fig. 8(b).  
 

  
(a) Isosurfaces of Q-criterion and dilatation 
contour (shock surface) 

(b) Numerical schlieren contour 

Figure 8. Instantaneous shock surface and density gradient contours of the 2.9 turbulent boundary 
layers flow over a compression corner.  

 
Table 3. Comparison of relevant parameters in the simulation against available data.  

Quantity Experiment26, 27 DNS (Wu and Martin)7 DNS (CESE) 
Wall temperature (K) 260.24 307.0 260.24 
Cf 0.00225 0.00217 0.00209 

€ 

δ0  (mm) 6.7 6.4 6.7 

€ 

θ0  (mm) 0.43 0.38 0.49 

€ 

Reθ  2400 2300 2900 
Separation point -3.2

€ 

δ0  -3.0

€ 

δ0  -3.5

€ 

δ0  
Reattachment point 1.6

€ 

δ0  1.2

€ 

δ0  1.4

€ 

δ0  

 
Flow parameters of interest, obtained from the mean flow, are compared with experiments and 

other DNS results in Table 3. In the current computation, the initial momentum thickness of the boundary 
layer appears to be larger than that found in the experiments, but other parameters such as the boundary 
layer thickness and skin friction coefficient are close to the measured data. In general, Fig. 9(a) shows the 
discrepancies between the current inflow profile and the data to be within the error bar for 

€ 

y /δ > 0.3.  
Further inside the boundary layer, there are slight discrepancies between current results and data from the 
DNS study of Wu and Martin,7 possibly reminiscent of discrepancies in boundary layer (momentum) 
thickness. More studies are needed to identify the differences. Based on mean skin friction coefficient data, 
separation and reattachment points were determined and compared with data in Table 3. The predicted 
separation location is slightly earlier than that found in the experiment, but the overall (near-wall) 
separation region measured at the wall matches closely. Figure 9(b) shows the wall parallel velocity profile 
at x = 4

€ 

δ0  downstream of the corner. The overall agreement is reasonably good with most data points 
falling within the 5% uncertainty in experimental measurements. It is interesting to observe that there is 
better agreement between the current investigation and Ref. 7 in the downstream region than upstream (Fig. 
9(a)). 
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(a) Velocity profile at inflow (normalized by free 
stream value) 

(b) Wall parallel velocity profile 4

€ 

δ0  downstream 
of the corner (normalized by boundary layer 
edge value) 

Figure 9. Velocity profiles at two stations compared against experimental and available DNS data.  
 
The mean wall pressure distribution is one of the key features of the SWBLI problem. Depending on 

the ramp angle, the pressure distribution varies significantly. The distinctive pressure plateau that is 
indicative of the separation region begins to appear for ramp angles beyond a certain threshold value.43 
Comparison of the mean wall pressure distribution obtained from the current simulation against available 
data is shown in Fig. 10(a). Earlier separation and reattachment locations reported previously in this section 
is evident from the rise in pressure that appears to happen around x = -4

€ 

δ0 . The plateau portion of the 
pressure distribution also appears to terminate earlier, resulting in a lower level of pressure within the 
plateau portion of the curve. However, the recovery of the pressure in the post-shock region to its inviscid 
value does appear to follow the experimental data as well the DNS data of Wu and Martin.7 Previous 
studies7, 44 have indicated the presence of a large scale, slow motion of the shock that makes the separation 
bubble oscillate with a very low frequency. However, the statistics collected in this study was not 
sufficiently long enough to account for the low-frequency effect. The wall pressure fluctuations in terms of 
the normalized RMS values are shown in Fig. 10(b). Data from the experiments of Bookey et al.26 and 
other DNS computations7, 28 have also been plotted for comparison. The pressure fluctuation appears to 
show two peaks along the wall, one upstream of the corner inside the separation region and one 
downstream in the reattached region. The second peak from the current investigation, unlike that from Wu 
and Martin,7 is larger than the first peak similar to the results of Muppidi and Mahesh.28 The overall wall 
pressure fluctuations in the current study appear to be somewhere in the middle between those found in the 
other two DNS results. The second peak observed here could be associated with the focusing effects 
coming from the interaction of turbulent structures with the compression waves formed atop the separation 
region. However, the experimental data only shows a relatively mild growth in wall pressure fluctuations 
on the ramp. All three computational results overpredict the wall pressure fluctuations in general but to a 
different extent.  The reason for higher computational pressure fluctuations is unknown and could be a 
topic for future studies. 
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(a) Mean wall pressure distribution (b) Normalized wall pressure fluctuation  

Figure 10. Comparison of mean wall pressure and its fluctuation, obtained from present simulation, 
against other available data.  
 

Figure 11 shows the spanwise averaged mean velocity contour along with the streamwise 
locations at which the various components of the Reynolds stress as well as the mass-flux turbulence 
intensity, shown in Fig. 12, have been extracted to be analyzed. As can be seen from Figs. 12 (a)–(c), the 
various components of the Reynolds stresses are generally amplified downstream of the interaction region, 
similar to what was seen in the case of isotropic turbulence passing through a normal shock (Section IV. 
(A)). The 

€ 

ρv' v'  and 

€ 

ρu' v'  components in general appear to experience larger amplification than the 
streamwise component. The overall levels appear to be smaller than those found in the DNS studies by Wu 
and Martin,7 but the trend closely mirrors those found in that study as well as others.28, 45 Given that mass-
flux turbulence amplification is a direct function of the pressure rise, the levels downstream of the 
interaction (see Fig. 12(d)) are much higher than those before it and the overall amplification factor of 
approximately 5 is in line with those predicted by other studies.7, 45, 46  

 
 

 
Figure 11. Mean velocity contour is shown along with locations at which Reynolds stress data have 
been extracted. 
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(a) 

€ 

ρu' u'  (b) 

€ 

ρv' v'  

  
(c) 

€ 

−ρu' v'  (d) Mass-flux turbulence intensity 
Figure 12. Reynolds stress and mass-flux turbulence intensity at various streamwise locations. 

V. Summary  
 

Application of the novel space-time CESE numerical method for computing shock-turbulence 
interactions with tetrahedral meshes was reported. For the case of a normal shock interacting with isotropic 
turbulence, both the regimes of wrinkled shock and broken shock were investigated. Grid convergence was 
demonstrated for the regime of a wrinkled shock. Overall, the various modes through which the turbulence 
interacts with the normal shock and the associated flow physics is accurately captured by CESE and was 
found to be consistent with both linear theory as well as previous DNS investigations. DNS-accessible 
turbulent shock boundary-layer interaction was also investigated as part of this work. To the knowledge of 
the authors, tetrahedral meshes were used for the first time in DNS studies of this particular SWBLI 
problem. The necessary time-dependent inflow boundary data were generated using an auxiliary 
computation that followed the recycling approach. The results indicate reasonable agreement with existing 
experimental data as well as DNS results. Some discrepancies in the incoming boundary layer momentum 
thickness as well as in the mean wall pressure distribution were observed. The differences in the inflow 
turbulent boundary layers among different DNS results could play a role. The exact cause of these 
discrepancies is left for future studies. A longer integration time is also needed in future work to account 
for the low-frequency separation bubble oscillation. In summary, the overall results for both canonical 
problems indicate that the CESE method is a promising alternative to conduct DNS studies on complex 
configurations and flows involving shock-turbulence interactions with pure unstructured meshes. 
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